Art of the Hands

Time to Tinker

Tag: Failure

Wood work

Lately, i have been missing my woodworking shop. luckily for me, about a week ago we were clearing some bushes called Russian olive trees. it is an obnoxious tree with thorns about an inch long and extremely painful. We were removing one of these trees and I asked my boss if I could have the base of the tree where it is the thickest and spikeless. I have had this in my bedroom waiting for about 3 weeks taunting me to do something with it and I finally decided what I was going to do. Thanks to all these blogging posts I have accumulated a large collection of assorted drill bits with nowhere good to keep them. I, therefore, decided that I would carve myself a catch-all drill bit chest.

I started this project by cutting off a smaller branch of wood from the main stump so I would have a manageable piece to work with. next, I recut the ends so they would be mostly parallel. then I cut the branch in half so that I could start carving

Once I had 2 halves, I used a chisel to carve out a cavity for the drill bits to be put in. this took a long time and there are a few things I would recommend if you wanted to try this on your own.

  1. First, USE GLOVES. Seriously! I have been doing woodworking for a long time and I now have two new scars to add to my collection on my hands. the problem is that to carve wood like this takes a lot of force and that means that when the chisel does something that you don’t expect, it does it very quickly and with a lot of force. if you aren’t wearing gloves then I would not be surprised if a chisel could go into your hand enough to need stitches, but if you are wearing gloves then you should be fine. both of the new scars I got were because I was being dumb and was not wearing gloves. I got lucky but it is better to not take the risk.
  2. take small shavings. I know that it can be tempting to try to take a huge chunk of wood out in one pass with your chisel but this is a bad idea, for two main reasons. one reason is that it is easier to get yourself hurt like I talked about earlier, and second is it is very annoying to work around. you end up trying to clean up around the huge canyon that you have just carved in the middle of your workpiece and that is not only time consuming but also frustrating. take it from me, don’t get greedy and only cut small shavings at a time.

one thing that I should note is that this is going to take a while to do so make sure that you are prepared to spend multiple days on this project. This is something I should have done better because about the time that I finished half of the carving, I.E. I finished carving one of the halves of the toolbox, I got impatient and decided that I was done with this project, at least for the time being. I can carve the second half later but for now, I had already spent several Saturdays working on this and so I was ready to move on to another project.

to finish this toolbox I bought a hinge so the 2 halves can swing open like a proper toolbox. I also removed the bark because it was getting a bit torn with all the work I had spent on this piece already. I was a little bummed about this because I was hoping to leave the bark on so the final piece would have a woodsy/rustic feel, but sometimes the plan has to change.

In all, I am a little disappointed with how this turned out. Its probably just because I am used to working with power tools, not hand tools, and power tools can get a much cleaner finish with much smoother edges, but sometimes you make do. I will probably be adding feet at the end but for now, this is the final product.

I hope this blog was helpful to you in some way. one of the things that a lot of college students, like me, have to deal with regularly is the lack of prime materials or tools. however, if you have enough time and a small assortment of cheap hand tools you can still make everything that you want to without the need to buy an expensive power tool. Feel free to try this yourself! All you need is a piece of wood big enough and a little creativity and the world is yours. Thanks for joining me and Happy Tinkering!

Peculiar Parachute

This week I decided to test a concept for a unique parachute system I had seen used in model rockets before. The general idea is to deploy a giant streamer to produce the drag instead of a traditional parachute. The idea seems sound, there is still lots of surface area to produce drag so it should work. I know the idea work too because I once put a streamer on a model flying airplane so my dad could fly his airplane through my streamer, just for fun, and even though the airplane I was using was usually overpowered to the extent that it could accelerate while pointing straight up. However, when we attached the streamer to the plane, it struggled to move forward fast enough to maintain flight.

This is great and all but I wanted to see if I could use this concept on a smaller scale. As a testing platform, I decided to make a blowgun out of PVC and copper wire. The PVC was the barrel and I made a cylinder out of the copper wire to use as the projectile. The copper itself didn’t fit well enough so I perfected the fit with lots of tapes so there would be a good nearly airtight seal with the inside of the PVC.

At this point, I was ready to make my parachute. I started by cutting a plastic trash bag into strips about 1.5 inches wide and taping them together to make a very long streamer. I attached that to the end of my projectile and spent about 5 minutes stuffing the whole thing into my PVC barrel. However when I went to test it, I ran into a problem that I would be facing a lot with this project, the streamer was packed in so tight that I could not muster enough air push the projectile out of the PVC. The problem is that there was so much plastic touching the wall of my barrel that no matter how I folded it there would be so much friction that I would not be able to muster enough force to move it with just my breath.

Next, I decided to try to shorten the streamer to about ¼ of the original size. At this size, I was able to shoot the weight out of the barrel with enough velocity to send it flying down my hallway and slamming into my wall. I got lucky as there were no holes in the wall but I would recommend all blowgun projects to be tested outside. This success was a double-edged sword because while it allowed me to shoot my weight and proceed with my tests, the streamer was not slowing it down any appreciable amount. To try to combat this, I cut the rest of the tail I had already cut off into three more pieces and attached it to the back of the projectile with the original part of the tail. The idea was that the added tails would allow the drag to be increased and still let it get shot out of the blowgun. This was an incorrect assumption and I was completely unable to shoot the dart again.

I tried removing two of the streamers and while I was now again able to shoot the projectile, there was again no appreciable difference in the velocity of the weight. As a last ditch effort, I tried attaching the removed 2 streamers to the front of the weight and fitting those down the barrel in front of the main projectile. This took a long time to do but did allow me to actually shoot the projectile with just the power of my breath, again however the velocity of the projectile was almost entirely unchanged.

Upon further review, I think my problem was with the setup of this experiment, not with the experiment itself. Drag, at least air drag, is partially dependent on velocity. This is why when things fall they reach a terminal velocity because at that point the drag caused by the air is equal to the pull of gravity and equilibrium is achieved. I think that the reason why the streamers didn’t work better is that they were moving relatively slow compared to the terminal velocity of the system and so they couldn’t provide enough drag to be noticeable. The weight of my projectile also didn’t help any. Had I redone this test by launching something out of a model rocket and so allowed the streamers to reach terminal velocity then I could have seen how effective they were in slowing stuff down but because I wanted to make this home scale the project was ultimately a failure but a good lesson learned.

I wanted to share project because of it a very important thing about tinkering. A failure is always an option. Part of what makes tinkering, tinkering, is the ability to change or scrap ideas on the fly. This project changed multiple times while building it and finally was determined to be a lost cause. Could I have fixed these problems and found a solution that works, yes, but that would have required more time and effort that I was willing to expand on the project? Failing is the bread and butter of tinkering. When you succeed you learn one way to do one thing but when you fail you learn one way that a concept doesn’t work and that can be much more broadly applied to multiple topics.

I hope that you enjoyed this project and I hope you will join me for my next project. In the meantime though, have a good day and Happy Tinkering!